Part Number Hot Search : 
1N5247B PCF2119R M2049TNA CR0805 M54HC TD62507P 27260ZNA VRE2041
Product Description
Full Text Search
 

To Download M28W320FST70ZA6E Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 M28W320FST, M28W320FSB, M28W640FSB, M28W640FST
32Mbit (2Mb x16) and 64Mbit (4Mb x16) 3V Supply, Boot Block, Secure Flash Memories
FEATURES SUMMARY



SUPPLY VOLTAGE - VDD = 2.7V to 3.6V Core Power Supply - VDDQ= 1.65V to 3.6V for Input/Output - VPP = 12V for fast Program (optional) ACCESS TIME: 70ns PROGRAMMING TIME: - 10s typical - Double Word Programming Option - Quadruple Word Programming Option COMMON FLASH INTERFACE MEMORY BLOCKS - Parameter Blocks (Top or Bottom location) - Main Blocks HARDWARE PROTECTION - VPP Pin for write protect of all blocks SECURITY FEATURES - 128 bit User-programmable OTP segment - 64 bit Unique Device Identifier - KRYPTO Features: Modify Protection, Read Protection, Device Authentication AUTOMATIC STAND-BY MODE PROGRAM and ERASE SUSPEND 100,000 PROGRAM/ERASE CYCLES per BLOCK ELECTRONIC SIGNATURE - Manufacturer Code: 20h - Device Codes: M28W320FST: 880Ah, M28W320FSB: 880Bh M28W640FST: 8858h, M28W640FSB: 8859h ECOPACK(R) PACKAGE AVAILABLE
Figure 1. Package
BGA
TBGA64 (ZA) 10 x 13mm
August 2005
1/55
M28W320FST, M28W320FSB, M28W640FST, M28W640FSB
TABLE OF CONTENTS
FEATURES SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Figure 1. Package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 SUMMARY DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Table 1. Figure 2. Figure 3. Table 2. Figure 4. Figure 5. Figure 6. Figure 7. M28W320FS and M28W640FS Memory Architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 M28W320FS Logic Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 M28W640FS Logic Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Signal Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 TBGA Connections (Top view through package) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 M28W320FST and M28W320FSB Block Addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 M28W640FST and M28W640FSB Block Addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Protection Register Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
SIGNAL DESCRIPTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Address Inputs. . . . . . . . . . . . . . . . Data Input/Output (DQ0-DQ15). . . Chip Enable (E). . . . . . . . . . . . . . . Output Enable (G). . . . . . . . . . . . . Write Enable (W). . . . . . . . . . . . . . Reset (RP). . . . . . . . . . . . . . . . . . . VDD Supply Voltage . . . . . . . . . . . . VDDQ Supply Voltage. . . . . . . . . . . VPP Program Supply Voltage . . . . VSS Ground. . . . . . . . . . . . . . . . . . ....... ....... ....... ....... ....... ....... ....... ....... ....... ....... ...... ...... ...... ...... ...... ...... ...... ...... ...... ...... ....... ....... ....... ....... ....... ....... ....... ....... ....... ....... ...... ...... ...... ...... ...... ...... ...... ...... ...... ...... ....... ....... ....... ....... ....... ....... ....... ....... ....... ....... ...... ...... ...... ...... ...... ...... ...... ...... ...... ...... ...... ...... ...... ...... ...... ...... ...... ...... ...... ...... . . . . 10 . . . . 10 . . . . 10 . . . . 10 . . . . 10 . . . . 10 . . . . 10 . . . . 10 . . . . 10 . . . . 10
BUS OPERATIONS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Read. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Write. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Output Disable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Standby. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Automatic Standby. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Table 3. Bus Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 HARDWARE PROTECTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 VPP VPPLK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 SECURITY FEATURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 COMMAND INTERFACE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Read Memory Array Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Read Status Register Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Read Electronic Signature Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2/55
M28W320FST, M28W320FSB, M28W640FST, M28W640FSB
Table 4. Command Codes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Read CFI Query Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Block Erase Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Program Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Double Word Program Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Quadruple Word Program Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Clear Status Register Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Program/Erase Suspend Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Program/Erase Resume Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Protection Register Program Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Table 5. Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Table 6. Read Electronic Signature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Table 7. Read Protection Register and Protection Register Lock . . . . . . . . . . . . . . . . . . . . . . . . . 17 Table 8. Program, Erase Times and Program/Erase Endurance Cycles . . . . . . . . . . . . . . . . . . . 18 STATUS REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Program/Erase Controller Status (Bit 7) . . . Erase Suspend Status (Bit 6) . . . . . . . . . . . Erase Status (Bit 5) . . . . . . . . . . . . . . . . . . . Program Status (Bit 4) . . . . . . . . . . . . . . . . . VPP Status (Bit 3). . . . . . . . . . . . . . . . . . . . . Program Suspend Status (Bit 2) . . . . . . . . . Block Protection Status (Bit 1). . . . . . . . . . . Reserved (Bit 0). . . . . . . . . . . . . . . . . . . . . . Table 9. Status Register Bits . . . . . . . . . . . ...... ...... ...... ...... ...... ...... ...... ...... ...... ................................ ................................ ................................ ................................ ................................ ................................ ................................ ................................ ................................ . . . . 19 . . . . 19 . . . . 19 . . . . 19 . . . . 19 . . . . 19 . . . . 20 . . . . 20 . . . . 20
MAXIMUM RATING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Table 10. Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 DC and AC PARAMETERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Table 11. Operating and AC Measurement Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Figure 8. AC Measurement I/O Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Figure 9. AC Measurement Load Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Table 12. Capacitance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Table 13. DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Figure 10.Read AC Waveforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Table 14. Read AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Figure 11.Write AC Waveforms, Write Enable Controlled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Table 15. Write AC Characteristics, Write Enable Controlled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Figure 12.Write AC Waveforms, Chip Enable Controlled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Table 16. Write AC Characteristics, Chip Enable Controlled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Figure 13.Power-Up and Reset AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Table 17. Power-Up and Reset AC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 PACKAGE MECHANICAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Figure 14.TBGA64 - 10x13 active ball array, 1mm pitch, Bottom View Package Outline . . . . . . . . 30
3/55
M28W320FST, M28W320FSB, M28W640FST, M28W640FSB
Table 18. TBGA64 - 10x13 active ball array, 1mm pitch, Package Mechanical Data . . . . . . . . . . . 30 PART NUMBERING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Table 19. Ordering Information Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Table 20. Daisy Chain Ordering Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 APPENDIX A.BLOCK ADDRESS TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Table 21. Top Boot Block Addresses, M28W320FST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Table 22. Bottom Boot Block Addresses, M28W320FSB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Table 23. Top Boot Block Addresses, M28W640FST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Table 24. Bottom Boot Block Addresses, M28W640FSB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 APPENDIX B.COMMON FLASH INTERFACE (CFI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Table 25. Query Structure Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Table 26. CFI Query Identification String. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Table 27. CFI Query System Interface Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Table 28. Device Geometry Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Table 29. Primary Algorithm-Specific Extended Query Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Table 30. Security Code Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 APPENDIX C.FLOWCHARTS AND PSEUDO CODES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 Figure 15.Program Flowchart and Pseudo Code . . . . . . . . . . . . . . . . . . . . . . Figure 16.Double Word Program Flowchart and Pseudo Code . . . . . . . . . . . Figure 17.Quadruple Word Program Flowchart and Pseudo Code . . . . . . . . . Figure 18.Program Suspend & Resume Flowchart and Pseudo Code . . . . . . Figure 19.Erase Flowchart and Pseudo Code. . . . . . . . . . . . . . . . . . . . . . . . . Figure 20.Erase Suspend & Resume Flowchart and Pseudo Code . . . . . . . . Figure 21.Protection Register Program Flowchart and Pseudo Code. . . . . . . ...... ...... ...... ...... ...... ...... ...... ...... ...... ...... ...... ...... ...... ...... . . . . 45 . . . . 46 . . . . 47 . . . . 48 . . . . 49 . . . . 50 . . . . 51
APPENDIX D.COMMAND INTERFACE AND PROGRAM/ERASE CONTROLLER STATE. . . . . . . . 52 Table 31. Write State Machine Current/Next, sheet 1 of 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 Table 32. Write State Machine Current/Next, sheet 2 of 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 REVISION HISTORY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 Table 33. Document Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4/55
M28W320FST, M28W320FSB, M28W640FST, M28W640FSB
SUMMARY DESCRIPTION
The M28W320FS and M28W640FS are 32 Mbit (2Mbit x 16) and 64 Mbit (4Mbit x 16) Secure Flash memories. The devices can be erased electrically at block level and programmed in-system on a Word-by-Word basis using a 2.7V to 3.6V VDD supply for the circuitry and a 1.65V to 3.6V VDDQ supply for the Input/Output pins. An optional 12V VPP power supply is provided to speed up customer programming. The M28W320FS and M28W640FS feature 32Mbit and 64 Mbits respectively and have an asymmetrical block architecture with 4 KWord Parameter Blocks and 32 KWord Main Blocks. The M28W320FST and M28W640FST have the Parameter Blocks at the top of the memory address space while the M28W320FSB and M28W640FSB locate the Parameter Blocks starting from the bottom. Refer to Table 1., Figure 5. and Figure 6. for a detailed description of the devices memory architecture and map. All devices are equipped with hardware and software block protection features to avoid unwanted program/erase (modify) or read of the Flash memory content: Hardware Protection: - When VPP VPPLK all blocks are protected against program or erase. Software Protection thanks to KRYPTO Security Features: - Modify Protection: volatile and nonvolatile. - Read Protection. The KRYPTO Security features are described in a dedicated Application Note. Please contact STMicroelectronics for further details. Two registers are available for protection purpose: The Protection Register The KRYPTO Protection Register. The Protection Register is a 192 bit Protection Register to increase the protection of a system design. The Protection Register is divided into a 64 bit segment and a 128 bit segment. The 64 bit segment contains a unique device number written by ST, while the second one is one-time-programmable by the user. The user programmable segment can be permanently protected. Figure 7., shows the Protection Register Memory Map. The KRYPTO Protection Register is used to manage the Modify and Read protection modes. It also features a Device Authentication mechanism. The KRYPTO Protection Register is described in a dedicated Application Note. Please contact STMicroelectronics for further details. Each block can be erased separately. Erase can be suspended in order to perform either read or program in any other block and then resumed. Program can be suspended to read data in any other block and then resumed. Each block can be programmed and erased over 100,000 cycles. Program and Erase commands are written to the Command Interface of the memory. An on-chip Program/Erase Controller takes care of the timings necessary for program and erase operations. The end of a program or erase operation can be detected and any error conditions identified. The command set required to control the memory is consistent with JEDEC standards. All the devices are offered in a TBGA64 (10 x 13mm) package. In order to meet environmental requirements, ST offers the M28W320FS and M28W640FS in ECOPACK(R) packages. ECOPACK packages are Lead-free. The category of second Level Interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com. All devices are supplied with all the bits erased (set to '1').
Table 1. M28W320FS and M28W640FS Memory Architecture
Parameter Blocks Device No. of Blocks M28W320FS M28W640FS
Note: 1. Erasable Block size.
Main Blocks No. of Blocks 63 127 Block Size 32 KWords 32 KWords
Block Size(1) 4 KWords 4 KWords
8 8
5/55
M28W320FST, M28W320FSB, M28W640FST, M28W640FSB
Figure 2. M28W320FS Logic Diagram
VDD VDDQ VPP 21 A0-A20 W E G RP M28W320FST M28W320FSB DQ0-DQ15 16 A0-A21 W E G RP M28W640FST M28W640FSB DQ0-DQ15 22
Figure 3. M28W640FS Logic Diagram
VDD VDDQ VPP 16
VSS
AI09925
VSS
AI09909
Table 2. Signal Names
M28W320FST and M28W320FSB A0-A20 DQ0-DQ15 E G W RP VDD VDDQ VPP VSS NC M28W640FST and M28W640FSB A0-A21 Address Inputs Data Input/Output Chip Enable Output Enable Write Enable Reset Core Power Supply Power Supply for Input/Output Optional Supply Voltage for Fast Program & Erase Ground Not Connected Internally Signal Names
6/55
M28W320FST, M28W320FSB, M28W640FST, M28W640FSB
Figure 4. TBGA Connections (Top view through package)
1
2
3
4
5
6
7
8
A
A0
A5
A7
VPP
A12
VDD
A17
A21
B
A1
VSS
A8
E
A13
NC
A18
NC
C
A2
A6
A9
A11
A14
NC
A19
A20
D
A3
A4
A10
RP
NC
NC
A15
A16
E
DQ8
DQ1
DQ9
DQ3
DQ4
NC
DQ15
NC
F
NC
DQ0
DQ10
DQ11
DQ12
NC
NC
G
G
NC
NC
DQ2
VDDQ
DQ5
DQ6
DQ14
W
H
NC
NC
VDD
VSSQ
DQ13
VSS
DQ7
NC
AI09910b
Note: 1. The above figure gives the TBGA connections for M28W640FST and M28W640FSB. On M28W320FST and M28W320FSB devices, A21 is NC.
7/55
M28W320FST, M28W320FSB, M28W640FST, M28W640FSB
Figure 5. M28W320FST and M28W320FSB Block Addresses
M28W320FST Top Boot Block Addresses M28W320FSB Bottom Boot Block Addresses
1FFFFF 4 KWords 1FF000 Total of 8 4 KWord Blocks 1F8FFF 4 KWords 1F8000 1F7FFF 32 KWords 1F0000
1FFFFF 32 KWords 1F8000 1F7FFF 32 KWords 1F0000 Total of 63 32 KWord Blocks
00FFFF 32 KWords 008000 007FFF 4 KWords Total of 63 32 KWord Blocks 007000 Total of 8 4 KWord Blocks 000FFF 32 KWords 4 KWords 000000
00FFFF 32 KWords 008000 007FFF 000000
AI09931
8/55
M28W320FST, M28W320FSB, M28W640FST, M28W640FSB
Figure 6. M28W640FST and M28W640FSB Block Addresses
M28W640FST Top Boot Block Addresses M28W640FSB Bottom Boot Block Addresses
3FFFFF 4 KWords 3FF000 Total of 8 4 KWord Blocks 3F8FFF 4 KWords 3F8000 3F7FFF 32 KWords 3F0000
3FFFFF 32 KWords 3F8000 3F7FFF 32 KWords 3F0000 Total of 127 32 KWord Blocks
00FFFF 32 KWords 008000 007FFF 4 KWords Total of 127 32 KWord Blocks 007000 Total of 8 4 KWord Blocks 000FFF 32 KWords 4 KWords 000000
AI09911
00FFFF 32 KWords 008000 007FFF 000000
Note: Also see APPENDIX A., Tables 23 and 24 for a full listing of the Block Addresses.
Figure 7. Protection Register Memory Map
PROTECTION REGISTER 8Ch User Programmable OTP 85h 84h Unique device number 81h 80h Protection Register Lock 1 0
AI05520b
9/55
M28W320FST, M28W320FSB, M28W640FST, M28W640FSB
SIGNAL DESCRIPTIONS
See Figures 2 and 3, Logic Diagrams and Table 2., Signal Names, for a brief overview of the signals connected to this device. Address Inputs. The Address Inputs select the cells in the memory array to access during Bus Read operations. Address Inputs range from A0 to A20 for the M28W320FS. The M28W640FS has an additional A21 address line. During Bus Write operations they control the commands sent to the Command Interface of the internal state machine. Data Input/Output (DQ0-DQ15). The Data I/O outputs the data stored at the selected address during a Bus Read operation or inputs a command or the data to be programmed during a Write Bus operation. Chip Enable (E). The Chip Enable input activates the memory control logic, input buffers, decoders and sense amplifiers. When Chip Enable is at VILand Reset is at VIH the device is in active mode. When Chip Enable is at VIH the memory is deselected, the outputs are high impedance and the power consumption is reduced to the stand-by level. Output Enable (G). The Output Enable controls data outputs during the Bus Read operation of the memory. Write Enable (W). The Write Enable controls the Bus Write operation of the memory's Command Interface. The data and address inputs are latched on the rising edge of Chip Enable, E, or Write Enable, W, whichever occurs first. Reset (RP). The Reset input provides a hardware reset of the memory. When Reset is at VIL, the memory is in reset mode: the outputs are high impedance and the current consumption is minimized. After Reset all blocks are in the Locked state. When Reset is at VIH, the device is in normal operation. Exiting reset mode the device enters read array mode, but a negative transition of Chip Enable or a change of the address is required to ensure valid data outputs. VDD Supply Voltage. VDD provides the power supply to the internal core of the memory device. It is the main power supply for all operations (Read, Program and Erase). VDDQ Supply Voltage. VDDQ provides the power supply to the I/O pins and enables all Outputs to be powered independently from VDD. VDDQ can be tied to VDD or can use a separate supply. VPP Program Supply Voltage. VPP is both a control input and a power supply pin. The two functions are selected by the voltage range applied to the pin. The Supply Voltage VDD and the Program Supply Voltage VPP can be applied in any order. If VPP is kept in a low voltage range (0V to 3.6V) VPP is seen as a control input. In this case a voltage lower than VPPLK gives an absolute protection against program or erase, while VPP > VPP1 enables these functions (see Table 13., DC Characteristics, for the relevant values). VPP is only sampled at the beginning of a program or erase; a change in its value after the operation has started does not have any effect on Program or Erase. If VPP is set to VPPH, it acts as a power supply pin. In this condition VPP must be stable until the Program/Erase algorithm is completed (see Table 15. and Table 16.). A Quadruple Word Program command will be ignored if VPP is not set to VPPH while a Double Word Program can be performed even if VPP is set to VDD. VSS Ground. VSS is the reference for all voltage measurements. Note: Each device in a system should have VDD, VDDQ and VPP decoupled with a 0.1F capacitor close to the pin. See Figure 9., AC Measurement Load Circuit. The PCB track widths should be sufficient to carry the required VPP program and erase currents.
10/55
M28W320FST, M28W320FSB, M28W640FST, M28W640FSB
BUS OPERATIONS
There are six standard bus operations that control the device. These are Bus Read, Bus Write, Output Disable, Standby, Automatic Standby and Reset. See Table 3., Bus Operations, for a summary. Typically glitches of less than 5ns on Chip Enable or Write Enable are ignored by the memory and do not affect bus operations. Read. Read Bus operations are used to output the contents of the Memory Array, the Electronic Signature, the Status Register and the Common Flash Interface. Both Chip Enable and Output Enable must be at VIL in order to perform a read operation. The Chip Enable input should be used to enable the device. Output Enable should be used to gate data onto the output. The data read depends on the previous command written to the memory (see Command Interface section). See Figure 10., Read AC Waveforms, and Table 14., Read AC Characteristics, for details of when the output becomes valid. Read mode is the default state of the device when exiting Reset or after power-up. Write. Bus Write operations write Commands to the memory or latch Input Data to be programmed. A write operation is initiated when Chip Enable and Write Enable are at VIL with Output Enable at VIH. Commands, Input Data and Addresses are latched on the rising edge of Write Enable or Chip Enable, whichever occurs first. See Figure 11. and Figure 12., Write AC Waveforms, and Table 15. and Table 16., Write AC Table 3. Bus Operations
Operation Bus Read Bus Write Output Disable Standby Reset E VIL VIL VIL VIH X G VIL VIH VIH X X W VIH VIL VIH X X RP VIH VIH VIH VIH VIL VPP Don't Care VDD or VPPH Don't Care Don't Care Don't Care DQ0-DQ15 Data Output Data Input Hi-Z Hi-Z Hi-Z
Characteristics, for details of the timing requirements. Output Disable. The data outputs are high impedance when the Output Enable is at VIH. Standby. Standby disables most of the internal circuitry allowing a substantial reduction of the current consumption. The memory is in stand-by when Chip Enable is at VIH and the device is in read mode. The power consumption is reduced to the stand-by level and the outputs are set to high impedance, independently from the Output Enable or Write Enable inputs. If Chip Enable switches to VIH during a program or erase operation, the device enters Standby mode when finished. Automatic Standby. Automatic Standby provides a low power consumption state during Read mode. Following a read operation, the device enters Automatic Standby after 150ns of bus inactivity even if Chip Enable is Low, VIL, and the supply current is reduced to IDD1. The data Inputs/Outputs will still output data if a bus Read operation is in progress. Reset. During Reset mode when Output Enable is Low, VIL, the memory is deselected and the outputs are high impedance. The memory is in Reset mode when Reset is at VIL. The power consumption is reduced to the Standby level, independently from the Chip Enable, Output Enable or Write Enable inputs. If Reset is pulled to VSS during a Program or Erase, this operation is aborted and the memory content is no longer valid.
Note: X = VIL or VIH, VPPH = 12V 5%.
11/55
M28W320FST, M28W320FSB, M28W640FST, M28W640FSB
HARDWARE PROTECTION
All devices feature hardware protection. Refer to SIGNAL DESCRIPTIONS section for a detailed description of these signals. VPP VPPLK. The VPP pin protects all the blocks. Refer to SIGNAL DESCRIPTIONS section for a detailed description of these signals.
SECURITY FEATURES
The M28W320FS and M28W640FS are equipped with KRYPTO Security features performing software protection. They allow any block to be protected from program/erase or read operations: Modify Protection including Volatile Block Lock/Unlock, Non-Volatile Block Modify Protection, Non-Volatile Password Modify Protection and Irreversible Protection. Read Protection. The KRYPTO features (Modify Protection mode, Read Protection mode and Device Authentication mechanism) are not described in this Datasheet. For further details concerning these additional protection modes please contact ST Sales Offices. The devices also feature a 64 bit Unique Device Identifier and a 128 bit user-programmable OTP segment (see Figure 7., Protection Register Memory Map and Protection Register Program Command).
12/55
M28W320FST, M28W320FSB, M28W640FST, M28W640FSB
COMMAND INTERFACE
All Bus Write operations to the memory are interpreted by the Command Interface. Commands consist of one or more sequential Bus Write operations. An internal Program/Erase Controller handles all timings and verifies the correct execution of the Program and Erase commands. The Program/Erase Controller provides a Status Register whose output may be read at any time during, to monitor the progress of the operation, or the Program/Erase states. See Table 4., Command Codes, for a summary of the commands and see APPENDIX D., Table 31., Write State Machine Current/Next, sheet 1 of 2., for a summary of the Command Interface. The Command Interface is reset to Read mode when power is first applied, when exiting from Reset or whenever VDD is lower than VLKO. Command sequences must be followed exactly. Any invalid combination of commands will reset the device to Read mode. Refer to Table 5., Commands, in conjunction with the text descriptions below. Read Memory Array Command The Read command returns the memory to its Read mode. One Bus Write cycle is required to issue the Read Memory Array command and return the memory to Read mode. Subsequent read operations will read the addressed location and output the data. When a device Reset occurs, the memory defaults to Read mode. Read Status Register Command The Status Register indicates when a program or erase operation is complete and the success or failure of the operation itself. Issue a Read Status Register command to read the Status Register's contents. Subsequent Bus Read operations read the Status Register at any address, until another command is issued. See Table 9., Status Register Bits, for details on the definitions of the bits. The Read Status Register command may be issued at any time, even during a Program/Erase operation. Any Read attempt during a Program/ Erase operation will automatically output the content of the Status Register. Read Electronic Signature Command The Read Electronic Signature command reads the Manufacturer and Device Codes, and the Protection Register. The Read Electronic Signature command consists of one write cycle, a subsequent read will output the Manufacturer Code, the Device Code and the Protection Register. See Tables 6, and 7 for the valid address. Table 4. Command Codes
Hex Code
01h
Command Block Lock confirm Program Erase Double Word Program Program Clear Status Register Quadruple Word Program Read Status Register Read Electronic Signature Read CFI Query Program/Erase Suspend Protection Register Program Program/Erase Resume Read Memory Array
10h 20h 30h 40h 50h 56h 70h 90h 98h B0h C0h D0h FFh
Read CFI Query Command The Read Query Command is used to read data from the Common Flash Interface (CFI) Memory Area, allowing programming equipment or applications to automatically match their interface to the characteristics of the device. One Bus Write cycle is required to issue the Read Query Command. Once the command is issued subsequent Bus Read operations read from the Common Flash Interface Memory Area. See APPENDIX B., COMMON FLASH INTERFACE (CFI), Tables 25, 26, 27, 28, 29 and 30 for details on the information contained in the Common Flash Interface memory area. Block Erase Command The Block Erase command can be used to erase a block. It sets all the bits within the selected block to '1'. All previous data in the block is lost. If the block is protected then the Erase operation will abort, the data in the block will not be changed and the Status Register will output the error. Two Bus Write cycles are required to issue the command. The first bus cycle sets up the Erase command. The second latches the block address in the internal state machine and starts the Program/ Erase Controller.
13/55
M28W320FST, M28W320FSB, M28W640FST, M28W640FSB
If the second bus cycle is not Write Erase Confirm (D0h), Status Register bits b4 and b5 are set and the command aborts. Erase aborts if Reset turns to VIL. As data integrity cannot be guaranteed when the Erase operation is aborted, the block must be erased again. During Erase operations the memory will accept the Read Status Register command and the Program/Erase Suspend command, all other commands will be ignored. Typical Erase times are given in Table 8., Program, Erase Times and Program/Erase Endurance Cycles. See APPENDIX C., Figure 19., Erase Flowchart and Pseudo Code, for a suggested flowchart for using the Erase command. Program Command The memory array can be programmed word-byword. Two bus write cycles are required to issue the Program Command. The first bus cycle sets up the Program command. The second latches the Address and the Data to be written and starts the Program/Erase Controller. During Program operations the memory will accept the Read Status Register command and the Program/Erase Suspend command. Typical Program times are given in Table 8., Program, Erase Times and Program/Erase Endurance Cycles. Programming aborts if Reset goes to VIL. As data integrity cannot be guaranteed when the program operation is aborted, the block containing the memory location must be erased and reprogrammed. See APPENDIX C., Figure 15., Program Flowchart and Pseudo Code, for the flowchart for using the Program command. Double Word Program Command This feature is offered to improve the programming throughput, writing a page of two adjacent words in parallel.The two words must differ only for the address A0. Three bus write cycles are necessary to issue the Double Word Program command. The first bus cycle sets up the Double Word Program Command. The second bus cycle latches the Address and the Data of the first word to be written. The third bus cycle latches the Address and the Data of the second word to be written and starts the Program/Erase Controller. Read operations output the Status Register content after the programming has started. Programming aborts if Reset goes to VIL. As data integrity cannot be guaranteed when the program opera14/55
tion is aborted, the block containing the memory location must be erased and reprogrammed. See APPENDIX C., Figure 16., Double Word Program Flowchart and Pseudo Code for the flowchart for using the Double Word Program command. Quadruple Word Program Command This feature is offered to improve the programming throughput, writing a page of four adjacent words in parallel.The four words must differ only for the addresses A0 and A1. A Quadruple word Program command will be ignored if VPP is not set to VPPH. Five bus write cycles are necessary to issue the Quadruple Word Program command. The first bus cycle sets up the Quadruple Word Program Command. The second bus cycle latches the Address and the Data of the first word to be written. The third bus cycle latches the Address and the Data of the second word to be written. The fourth bus cycle latches the Address and the Data of the third word to be written. The fifth bus cycle latches the Address and the Data of the fourth word to be written and starts the Program/Erase Controller. Read operations output the Status Register content after the programming has started. Programming aborts if Reset goes to VIL. As data integrity cannot be guaranteed when the program operation is aborted, the block containing the memory location must be erased and reprogrammed. See APPENDIX C., Figure 17., Quadruple Word Program Flowchart and Pseudo Code, for the flowchart for using the Quadruple Word Program command. Clear Status Register Command The Clear Status Register command can be used to reset bits 1, 3, 4 and 5 in the Status Register to `0'. One bus write cycle is required to issue the Clear Status Register command. The bits in the Status Register do not automatically return to `0' when a new Program or Erase command is issued. The error bits in the Status Register should be cleared before attempting a new Program or Erase command. Program/Erase Suspend Command The Program/Erase Suspend command is used to pause a Program or Erase operation. One bus write cycle is required to issue the Program/Erase command and pause the Program/Erase controller. During Program/Erase Suspend the Command Interface will accept the Program/Erase Resume,
M28W320FST, M28W320FSB, M28W640FST, M28W640FSB
Read Array, Read Status Register, Read Electronic Signature and Read CFI Query commands. Additionally, if the suspend operation was Erase then the Program, Double Word Program, Quadruple Word Program, Block Lock, or Protection Program commands will also be accepted. The block being erased may be protected by issuing the Block Protect, Block Lock or Protection Program commands. When the Program/Erase Resume command is issued the operation will complete. Only the blocks not being erased may be read or programmed correctly. During a Program/Erase Suspend, the device can be placed in a pseudo-standby mode by taking Chip Enable to VIH. Program/Erase is aborted if Reset turns to VIL. See APPENDIX C., Figure 18., Program Suspend & Resume Flowchart and Pseudo Code, and Figure 20., Erase Suspend & Resume Flowchart and Pseudo Code, for flowcharts for using the Program/Erase Suspend command. Program/Erase Resume Command The Program/Erase Resume command can be used to restart the Program/Erase Controller after a Program/Erase Suspend operation has paused it. One Bus Write cycle is required to issue the command. Once the command is issued subsequent Bus Read operations read the Status Register. See APPENDIX C., Figure 18., Program Suspend & Resume Flowchart and Pseudo Code, and Figure 20., Erase Suspend & Resume Flowchart and Pseudo Code, for flowcharts for using the Program/Erase Resume command. Protection Register Program Command The Protection Register Program command is used to Program the 128 bit user One-Time-Programmable (OTP) segment of the Protection Register. The segment is programmed 16 bits at a time. When shipped all bits in the segment are set to `1'. The user can only program the bits to `0'. Two write cycles are required to issue the Protection Register Program command. The first bus cycle sets up the Protection Register Program command. The second latches the Address and the Data to be written to the Protection Register and starts the Program/Erase Controller. Read operations output the Status Register content after the programming has started. The segment can be protected by programming bit 1 of the Protection Lock Register (see Figure 7., Protection Register Memory Map). Attempting to program a previously protected Protection Register will result in a Status Register error. The protection of the Protection Register is not reversible. The Protection Register Program cannot be suspended.
15/55
M28W320FST, M28W320FSB, M28W640FST, M28W640FSB
Table 5. Commands
Cycles Bus Write Operations 1st Cycle Op. Add Data
X X X X X X X FFh 70h 90h 98h 20h
Commands
2nd Cycle Op. Add Data
Read Read RA X RD SRD IDh QD D0h PD PD1
3rd Cycle
4th Cycle Add Data
5th Cycle Op. Add Data
Op. Add Data Op.
Read Memory Array Read Status Register Read Electronic Signature Read CFI Query Erase Program Double Word Program(3) Quadruple Word Program(4) Clear Status Register Program/Erase Suspend Program/Erase Resume Protection Register Program
1+ Write 1+ Write 1+ Write 1+ Write 2 2 3 Write Write Write
Read SA(2) Read Write QA BA PA
40h or Write 10h 30h
Write PA1
Write
PA2
PD2
5 1 1 1 2
Write Write Write Write Write
X X X X X
56h 50h B0h D0h C0h
Write PA1
PD1
Write
PA2
PD2 Write
PA3
PD3 Write
PA4
PD4
Write PRA
PRD
Note: 1. X = Don't Care, RA=Read Address, RD=Read Data, SRD=Status Register Data, ID=Identifier (Manufacture and Device Code), QA=Query Address, QD=Query Data, BA=Block Address, PA=Program Address, PD=Program Data, PRA=Protection Register Address, PRD=Protection Register Data. 2. The signature addresses are listed in Tables 6 and 7. 3. Program Addresses 1 and 2 must be consecutive Addresses differing only for A0. 4. Program Addresses 1,2,3 and 4 must be consecutive Addresses differing only for A0 and A1.
Table 6. Read Electronic Signature
Code Manufacture Code M28W320FST M28W320FSB Device Code M28W640FST M28W640FSB VIL VIL VIL VIL VIH VIH VIH VIH VIL VIL 0 0 Don't Care Don't Care 58h 59h 88h 88h Device E VIL VIL VIL G VIL VIL VIL W VIH VIH VIH A0 VIL VIH VIH A1 VIL VIL VIL A2-A7 0 0 0 A8-A20 A8-A21(2) Don't Care Don't Care Don't Care DQ0-DQ7 20h 0Ah 0Bh DQ8-DQ15 00h 88h 88h
Note: 1. RP = VIH. 2. Addresses range from A0 to A20 for the M28W320FS and from A0 to A21 for the M29W640FS.
16/55
M28W320FST, M28W320FSB, M28W640FST, M28W640FSB
Table 7. Read Protection Register and Protection Register Lock
Word Lock Unique ID 0 Unique ID 1 Unique ID 2 Unique ID 3 OTP 0 OTP 1 OTP 2 OTP 3 OTP 4 OTP 5 OTP 6 OTP 7 E VIL VIL VIL VIL VIL VIL VIL VIL VIL VIL VIL VIL VIL G VIL VIL VIL VIL VIL VIL VIL VIL VIL VIL VIL VIL VIL W VIH VIH VIH VIH VIH VIH VIH VIH VIH VIH VIH VIH VIH A0-A7 80h 81h 82h 83h 84h 85h 86h 87h 88h 89h 8Ah 8Bh 8Ch A8-A21(1) Don't Care Don't Care Don't Care Don't Care Don't Care Don't Care Don't Care Don't Care Don't Care Don't Care Don't Care Don't Care Don't Care DQ0 0 ID data ID data ID data ID data OTP data OTP data OTP data OTP data OTP data OTP data OTP data OTP data DQ1 OTP Prot. data ID data ID data ID data ID data OTP data OTP data OTP data OTP data OTP data OTP data OTP data OTP data DQ2 0 ID data ID data ID data ID data OTP data OTP data OTP data OTP data OTP data OTP data OTP data OTP data DQ3-DQ7 DQ8-DQ15 00h ID data ID data ID data ID data OTP data OTP data OTP data OTP data OTP data OTP data OTP data OTP data 00h ID data ID data ID data ID data OTP data OTP data OTP data OTP data OTP data OTP data OTP data OTP data
Note: 1. Addresses range from A0 to A20 for the M28W320FS and from A0 to A21 for the M29W640FS.
17/55
M28W320FST, M28W320FSB, M28W640FST, M28W640FSB
Table 8. Program, Erase Times and Program/Erase Endurance Cycles
Parameter Test Conditions M28W320FST, M28W320FST M28W640FST, M28W640FSB Min Word Program Double Word Program Quadruple Word Program Main Block Program VPP = VDD VPP = 12V 5% Parameter Block Program VPP = VDD VPP = 12V 5% Main Block Erase VPP = VDD VPP = 12V 5% Parameter Block Erase VPP = VDD Program/Erase Cycles (per Block) Data Retention 100,000 20 0.4 10 s cycles years 1 0.4 10 10 s s VPP = VDD VPP = 12V 5% VPP = 12V 5% VPP = 12V 5% Typ 10 10 10 0.16/0.08 (1) 0.32 0.02/0.01 (1) 0.04 1 Max 200 200 200 5 5 4 4 10 s s s s s s s s Unit
Note: 1. Typical time to program a Main or Parameter Block using the Double Word Program and the Quadruple Word Program commands respectively.
18/55
M28W320FST, M28W320FSB, M28W640FST, M28W640FSB
STATUS REGISTER
The Status Register provides information on the current or previous Program or Erase operation. The various bits convey information and errors on the operation. To read the Status register the Read Status Register command can be issued, refer to Read Status Register Command section. To output the contents, the Status Register is latched on the falling edge of the Chip Enable or Output Enable signals, and can be read until Chip Enable or Output Enable returns to VIH. Either Chip Enable or Output Enable must be toggled to update the latched data. Bus Read operations from any address always read the Status Register during Program and Erase operations. The bits in the Status Register are summarized in Table 9., Status Register Bits. Refer to Table 9. in conjunction with the following text descriptions. Program/Erase Controller Status (Bit 7). The Program/Erase Controller Status bit indicates whether the Program/Erase Controller is active or inactive. When the Program/Erase Controller Status bit is Low (set to `0'), the Program/Erase Controller is active; when the bit is High (set to `1'), the Program/Erase Controller is inactive, and the device is ready to process a new command. The Program/Erase Controller Status is Low immediately after a Program/Erase Suspend command is issued until the Program/Erase Controller pauses. After the Program/Erase Controller pauses the bit is High. During Program, Erase, operations the Program/ Erase Controller Status bit can be polled to find the end of the operation. Other bits in the Status Register should not be tested until the Program/Erase Controller completes the operation and the bit is High. After the Program/Erase Controller completes its operation the Erase Status, Program Status, VPP Status and Block Lock Status bits should be tested for errors. Erase Suspend Status (Bit 6). The Erase Suspend Status bit indicates that an Erase operation has been suspended or is going to be suspended. When the Erase Suspend Status bit is High (set to `1'), a Program/Erase Suspend command has been issued and the memory is waiting for a Program/Erase Resume command. The Erase Suspend Status should only be considered valid when the Program/Erase Controller Status bit is High (Program/Erase Controller inactive). Bit 7 is set within 30s of the Program/Erase Suspend command being issued therefore the memory may still complete the operation rather than entering the Suspend mode. When a Program/Erase Resume command is issued the Erase Suspend Status bit returns Low. Erase Status (Bit 5). The Erase Status bit can be used to identify if the memory has failed to verify that the block has erased correctly. When the Erase Status bit is High (set to `1'), the Program/ Erase Controller has applied the maximum number of pulses to the block and still failed to verify that the block has erased correctly. The Erase Status bit should be read once the Program/Erase Controller Status bit is High (Program/Erase Controller inactive). Once set High, the Erase Status bit can only be reset Low by a Clear Status Register command or a hardware reset. If set High it should be reset before a new Program or Erase command is issued, otherwise the new command will appear to fail. Program Status (Bit 4). The Program Status bit is used to identify a Program failure. When the Program Status bit is High (set to `1'), the Program/Erase Controller has applied the maximum number of pulses to the byte and still failed to verify that it has programmed correctly. The Program Status bit should be read once the Program/Erase Controller Status bit is High (Program/Erase Controller inactive). Once set High, the Program Status bit can only be reset Low by a Clear Status Register command or a hardware reset. If set High it should be reset before a new command is issued, otherwise the new command will appear to fail. VPP Status (Bit 3). The VPP Status bit can be used to identify an invalid voltage on the VPP pin during Program and Erase operations. The VPP pin is only sampled at the beginning of a Program or Erase operation. Indeterminate results can occur if VPP becomes invalid during an operation. When the VPP Status bit is Low (set to `0'), the voltage on the VPP pin was sampled at a valid voltage; when the VPP Status bit is High (set to `1'), the VPP pin has a voltage that is below the VPP Lockout Voltage, VPPLK, the memory is protected and Program and Erase operations cannot be performed. Once set High, the VPP Status bit can only be reset Low by a Clear Status Register command or a hardware reset. If set High it should be reset before a new Program or Erase command is issued, otherwise the new command will appear to fail. Program Suspend Status (Bit 2). The Program Suspend Status bit indicates that a Program operation has been suspended. When the Program Suspend Status bit is High (set to `1'), a Program/ Erase Suspend command has been issued and the memory is waiting for a Program/Erase Resume command. The Program Suspend Status should only be considered valid when the Pro19/55
M28W320FST, M28W320FSB, M28W640FST, M28W640FSB
gram/Erase Controller Status bit is High (Program/ Erase Controller inactive). Bit 2 is set within 5s of the Program/Erase Suspend command being issued therefore the memory may still complete the operation rather than entering the Suspend mode. When a Program/Erase Resume command is issued the Program Suspend Status bit returns Low. Block Protection Status (Bit 1). The Block Protection Status bit can be used to identify if a Program or Erase operation has tried to modify the contents of a locked block. When the Block Protection Status bit is High (set to `1'), a Program or Erase operation has been attempted on a locked block. Once set High, the Block Protection Status bit can only be reset Low by a Clear Status Register command or a hardware reset. If set High it should be reset before a new command is issued, otherwise the new command will appear to fail. Reserved (Bit 0). Bit 0 of the Status Register is reserved. Its value must be masked. Note: Refer to APPENDIX C., FLOWCHARTS AND PSEUDO CODES, for using the Status Register.
Table 9. Status Register Bits
Bit 7 Name P/E.C. Status '0' '1' 6 Erase Suspend Status '0' '1' 5 Erase Status '0' '1' 4 Program Status '0' '1' 3 VPP Status '0' '1' 2 Program Suspend Status '0' '1' 1 0 Block Protection Status '0' Reserved No operation to protected blocks In Progress or Completed Program/Erase on protected Block, Abort Program Success VPP Invalid, Abort VPP OK Suspended Erase Success Program Error In progress or Completed Erase Error Busy Suspended Logic Level '1' Ready Definition
Note: Logic level '1' is High, '0' is Low.
20/55
M28W320FST, M28W320FSB, M28W640FST, M28W640FSB
MAXIMUM RATING
Stressing the device above the rating listed in the Absolute Maximum Ratings table may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the Operating sections of this specification is not imTable 10. Absolute Maximum Ratings
Value Symbol TA TBIAS TSTG VIO VDD, VDDQ VPP Parameter Min Ambient Operating Temperature (1) Temperature Under Bias Storage Temperature Input or Output Voltage Supply Voltage Program Voltage - 40 - 40 - 55 - 0.6 - 0.6 - 0.6 Max 85 125 155 VDDQ+0.6 4.1 13 C C C V V V Unit
plied. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability. Refer also to the STMicroelectronics SURE Program and other relevant quality documents.
Note: 1. Depends on range.
21/55
M28W320FST, M28W320FSB, M28W640FST, M28W640FSB
DC AND AC PARAMETERS
This section summarizes the operating and measurement conditions, and the DC and AC characteristics of the device. The parameters in the DC and AC characteristics Tables that follow, are derived from tests performed under the Measurement Conditions summarized in Table 11., Operating and AC Measurement Conditions. Designers should check that the operating conditions in their circuit match the measurement conditions when relying on the quoted parameters.
Table 11. Operating and AC Measurement Conditions
M28W320FST, M28W320FST, M28W640FST, M28W640FSB Parameter Min VDD Supply Voltage VDDQ Supply Voltage (VDDQ VDD) Ambient Operating Temperature Load Capacitance (CL) Input Rise and Fall Times Input Pulse Voltages Input and Output Timing Ref. Voltages 2.7 2.7 -40 50 5 0 to VDDQ VDDQ/2 70 Max 3.6 3.6 85 Min 2.7 2.7 -40 50 5 0 to VDDQ VDDQ/2 85 Max 3.6 3.6 85 Min 2.7 2.7 -40 50 5 0 to VDDQ VDDQ/2 90 Max 3.6 3.6 85 Min 2.7 1.65 -40 50 5 0 to VDDQ VDDQ/2 10 Units Max 3.6 3.6 85 V V C pF ns V V
Figure 8. AC Measurement I/O Waveform
Figure 9. AC Measurement Load Circuit
VDDQ
VDDQ VDDQ/2 0V
AI00610
VDDQ VDD 25k DEVICE UNDER TEST 0.1F 0.1F CL 25k
CL includes JIG capacitance
AI00609C
Table 12. Capacitance
Symbol CIN COUT Parameter Input Capacitance Output Capacitance Test Condition VIN = 0V VOUT = 0V Min Max 6 12 Unit pF pF
Note: Sampled only, not 100% tested.
22/55
M28W320FST, M28W320FSB, M28W640FST, M28W640FSB
Table 13. DC Characteristics
Symbol ILI ILO IDD IDD1 IDD2 Parameter Input Leakage Current Output Leakage Current Supply Current (Read) Supply Current (Stand-by or Automatic Stand-by) Supply Current (Reset) Test Condition 0VVIN VDDQ 0VVOUT DDQ V E = VSS, G = VIH, f = 5MHz E = VDDQ 0.2V, RP = VDDQ 0.2V RP = VSS 0.2V Program in progress VPP = 12V 5% Program in progress VPP = VDD Erase in progress VPP = 12V 5% Erase in progress VPP = VDD E = VDDQ 0.2V, Erase suspended VPP > VDD VPP VDD RP = VSS 0.2V Program in progress VPP = 12V 5% Program in progress VPP = VDD Erase in progress VPP = 12V 5% Erase in progress VPP = VDD -0.5 VDDQ 2.7V VDDQ 2.7V IOL = 100A, VDD = VDD min, VDDQ = VDDQ min IOH = -100A, VDD = VDD min, VDDQ = VDDQ min VDDQ -0.1 1.65 11.4 3.6 12.6 1 2 -0.5 VDDQ -0.4 0.7 VDDQ 1 1 1 1 3 1 9 15 15 5 10 5 10 15 Min Typ Max 1 10 18 50 50 10 20 20 20 50 400 5 5 10 5 10 5 0.4 0.8 VDDQ +0.4 VDDQ +0.4 0.1 Unit A A mA A A mA mA mA mA A A A A mA A mA A V V V V V V V V V V
IDD3
Supply Current (Program)
IDD4
Supply Current (Erase)
IDD5 IPP IPP1 IPP2
Supply Current (Program/Erase Suspend) Program Current (Read or Stand-by) Program Current (Read or Stand-by) Program Current (Reset)
IPP3
Program Current (Program)
IPP4
Program Current (Erase)
VIL VIH VOL VOH VPP1 VPPH VPPLK VLKO
Input Low Voltage Input High Voltage Output Low Voltage Output High Voltage Program Voltage (Program or Erase operations) Program Voltage (Program or Erase operations) Program Voltage (Program and Erase lock-out) VDD Supply Voltage (Program and Erase lock-out)
23/55
M28W320FST, M28W320FSB, M28W640FST, M28W640FSB
Figure 10. Read AC Waveforms
tAVAV A0-A20/A21(1) tAVQV E tELQV tELQX G tGLQV tGLQX DQ0-DQ15 VALID tGHQX tGHQZ tEHQX tEHQZ VALID tAXQX
ADDR. VALID CHIP ENABLE
OUTPUTS ENABLED
DATA VALID
STANDBY
AI09928
Note: 1. Addresses range from A0 to A20 for the M28W320FS and from A0 to A21 for the M29W640FS.
Table 14. Read AC Characteristics
Symbol Alt Parameter M28W320FST, M28W320FST 70 tAVAV tAVQV tAXQX (1) tEHQX (1) tEHQZ (1) tELQV (2) tELQX (1) tGHQX (1) tGHQZ (1) tGLQV (2) tGLQX (1) tRC Address Valid to Next Address Valid Min Max Min Min Max Max Min Min Max Max Min 70 70 0 0 20 70 0 0 20 20 0 M28W640FST, M28W640FSB Unit 70 70 70 0 0 20 70 0 0 20 20 0 ns ns ns ns ns ns ns ns ns ns ns
tACC Address Valid to Output Valid tOH tOH tHZ tCE tLZ tOH tDF tOE Address Transition to Output Transition Chip Enable High to Output Transition Chip Enable High to Output Hi-Z Chip Enable Low to Output Valid Chip Enable Low to Output Transition Output Enable High to Output Transition Output Enable High to Output Hi-Z Output Enable Low to Output Valid
tOLZ Output Enable Low to Output Transition
Note: 1. Sampled only, not 100% tested. 2. G may be delayed by up to tELQV - tGLQV after the falling edge of E without increasing tELQV.
24/55
PROGRAM OR ERASE tAVAV VALID tAVWH tWHAX
A0-A20/A21(1)
E tELWL tWHEH
G tWHWL tWHGL
W tWLWH tWHDX COMMAND tVPHWH CMD or DATA STATUS REGISTER tQVVPL tWHEL tELQV
Figure 11. Write AC Waveforms, Write Enable Controlled
tDVWH
DQ0-DQ15
Note: 1. Addresses range from A0 to A20 for the M28W320FS and from A0 to A21 for the M29W640FS.
CONFIRM COMMAND OR DATA INPUT STATUS REGISTER READ 1st POLLING
AI09929
VPP
M28W320FST, M28W320FSB, M28W640FST, M28W640FSB
SET-UP COMMAND
25/55
M28W320FST, M28W320FSB, M28W640FST, M28W640FSB
Table 15. Write AC Characteristics, Write Enable Controlled
Symbol Alt Parameter M28W320FST, M28W320FST 70 tAVAV tAVWH tDVWH tELWL tELQV tQVVPL
(1,2)
M28W640FST, M28W640FSB 70 70 45 45 0 70 0 200 0 0 0 25 20 25 45
Unit
tWC tAS tDS tCS
Write Cycle Time Address Valid to Write Enable High Data Valid to Write Enable High Chip Enable Low to Write Enable Low Chip Enable Low to Output Valid Output Valid to VPP Low
Min Min Min Min Min Min Min Min Min Min Min Min Min Min
70 45 45 0 70 0 200 0 0 0 25 20 25 45
ns ns ns ns ns ns ns ns ns ns ns ns ns ns
tVPHWH
(1)
tVPS tAH tDH tCH
VPP High to Write Enable High Write Enable High to Address Transition Write Enable High to Data Transition Write Enable High to Chip Enable High Write Enable High to Chip Enable Low Write Enable High to Output Enable Low
tWHAX tWHDX tWHEH tWHEL tWHGL tWHWL tWLWH
tWPH tWP
Write Enable High to Write Enable Low Write Enable Low to Write Enable High
Note: 1. Sampled only, not 100% tested. 2. Applicable if VPP is seen as a logic input (VPP < 3.6V).
26/55
PROGRAM OR ERASE tAVAV VALID tAVEH tEHAX
A0-A20/A21
W tWLEL tEHWH
G tEHEL tEHGL
E tELEH tEHDX COMMAND tVPHEH CMD or DATA STATUS REGISTER tQVVPL tELQV
Figure 12. Write AC Waveforms, Chip Enable Controlled
tDVEH
DQ0-DQ15
Note: 1. Addresses range from A0 to A20 for the M28W320FS and from A0 to A21 for the M29W640FS.
CONFIRM COMMAND OR DATA INPUT STATUS REGISTER READ 1st POLLING
AI09930
VPP
M28W320FST, M28W320FSB, M28W640FST, M28W640FSB
POWER-UP AND SET-UP COMMAND
27/55
M28W320FST, M28W320FSB, M28W640FST, M28W640FSB
Table 16. Write AC Characteristics, Chip Enable Controlled
Symbol Alt Parameter M28W320FST, M28W320FST 70 tAVAV tAVEH tDVEH tEHAX tEHDX tEHEL tEHGL tEHWH tELEH tELQV tQVVPL
(1,2)
M28W640FST, M28W640FSB 70 70 45 45 0 0 25 25 0 45 70 0 200 0
Unit
tWC tAS tDS tAH tDH
Write Cycle Time Address Valid to Chip Enable High Data Valid to Chip Enable High Chip Enable High to Address Transition Chip Enable High to Data Transition
Min Min Min Min Min Min Min Min Min Min Min Min Min
70 45 45 0 0 25 25 0 45 70 0 200 0
ns ns ns ns ns ns ns ns ns ns ns ns ns
tCPH Chip Enable High to Chip Enable Low Chip Enable High to Output Enable Low tWH tCP Chip Enable High to Write Enable High Chip Enable Low to Chip Enable High Chip Enable Low to Output Valid Output Valid to VPP Low tVPS VPP High to Chip Enable High tCS Write Enable Low to Chip Enable Low
tVPHEH
(1)
tWLEL
Note: 1. Sampled only, not 100% tested. 2. Applicable if VPP is seen as a logic input (VPP < 3.6V).
28/55
M28W320FST, M28W320FSB, M28W640FST, M28W640FSB
Figure 13. Power-Up and Reset AC Waveforms
W, E, G
tPHWL tPHEL tPHGL
tPHWL tPHEL tPHGL
RP tVDHPH VDD, VDDQ Power-Up Reset
AI03537b
tPLPH
Table 17. Power-Up and Reset AC Characteristics
M28W320FST, M28W320FST, M28W640FST, M28W640FSB 70 tPHWL tPHEL tPHGL tPLPH(1,2) tVDHPH(3) Reset High to Write Enable Low, Chip Enable Low, Output Enable Low Reset Low to Reset High Supply Voltages High to Reset High During Program and Erase others Min Min Min Min 50 30 100 50 s ns ns s
Symbol
Parameter
Test Condition
Unit
Note: 1. The device Reset is possible but not guaranteed if tPLPH < 100ns. 2. Sampled only, not 100% tested. 3. It is important to assert RP in order to allow proper CPU initialization during power up or reset.
29/55
M28W320FST, M28W320FSB, M28W640FST, M28W640FSB
PACKAGE MECHANICAL
Figure 14. TBGA64 - 10x13 active ball array, 1mm pitch, Bottom View Package Outline
D FD FE D1 SD
E
E1
SE
ddd BALL "A1"
A
e
b A1
A2
BGA-Z23
Note: Drawing is not to scale.
Table 18. TBGA64 - 10x13 active ball array, 1mm pitch, Package Mechanical Data
millimeters Symbol Typ A A1 A2 b D D1 ddd e E E1 FD FE SD SE 1.000 13.000 7.000 1.500 3.000 0.500 0.500 - 12.900 - - - - - 10.000 7.000 0.300 0.800 0.350 9.900 - 0.500 10.100 - 0.100 - 13.100 - - - - - 0.0394 0.5118 0.2756 0.0591 0.1181 0.0197 0.0197 - 0.5079 - - - - - 0.3937 0.2756 0.200 Min Max 1.200 0.350 0.0118 0.0315 0.0138 0.3898 - 0.0197 0.3976 - 0.0039 - 0.5157 - - - - - 0.0079 Typ Min Max 0.0472 0.0138 inches
30/55
M28W320FST, M28W320FSB, M28W640FST, M28W640FSB
PART NUMBERING
Table 19. Ordering Information Scheme
Example: Device Type M28 Operating Voltage W = VDD = 2.7V to 3.6V; VDDQ = 1.65V to 3.6V Device Function 320FS = 32 Mbit (2 Mb x16), Boot Block, Secure, 0.13m 640FS = 64 Mbit (4 Mb x16), Boot Block, Secure, 0.13m Array Matrix T = Top Boot B = Bottom Boot Speed 70 = 70ns Package ZA = TBGA64:10 x 13mm, 1mm pitch Temperature Range 1 = 0 to 70 C 6 = -40 to 85 C Option Blank = Standard Packing T = Tape & Reel Packing E = ECOPACK Package, Standard Packing F = ECOPACK Package, Tape & Reel 24mm Packing M28W640FST 70 ZA 6 T
31/55
M28W320FST, M28W320FSB, M28W640FST, M28W640FSB
Table 20. Daisy Chain Ordering Scheme
Example: Device Type M28W640FS M28W320FS Daisy Chain -ZA = TBGA64: 10 x 13, 1mm pitch Option Blank = Standard Packing T = Tape & Reel Packing E = ECOPACK Package, Standard Packing F = ECOPACK Package, Tape & Reel 24mm Packing M28W640FS -ZA T
Note:Devices are shipped from the factory with the memory content bits erased to '1'. For a list of available options (Speed, Package, etc.) or for further information on any aspect of this device, please contact the ST Sales Office nearest to you.
32/55
M28W320FST, M28W320FSB, M28W640FST, M28W640FSB
APPENDIX A. BLOCK ADDRESS TABLES
Table 21. Top Boot Block Addresses, M28W320FST
# 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 Size (KWord) 4 4 4 4 4 4 4 4 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 Address Range 1FF000-1FFFFF 1FE000-1FEFFF 1FD000-1FDFFF 1FC000-1FCFFF 1FB000-1FBFFF 1FA000-1FAFFF 1F9000-1F9FFF 1F8000-1F8FFF 1F0000-1F7FFF 1E8000-1EFFFF 1E0000-1E7FFF 1D8000-1DFFFF 1D0000-1D7FFF 1C8000-1CFFFF 1C0000-1C7FFF 1B8000-1BFFFF 1B0000-1B7FFF 1A8000-1AFFFF 1A0000-1A7FFF 198000-19FFFF 190000-197FFF 188000-18FFFF 180000-187FFF 178000-17FFFF 170000-177FFF 168000-16FFFF 160000-167FFF 158000-15FFFF 150000-157FFF 148000-14FFFF 140000-147FFF 138000-13FFFF 130000-137FFF 128000-12FFFF 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 120000-127FFF 118000-11FFFF 110000-117FFF 108000-10FFFF 100000-107FFF 0F8000-0FFFFF 0F00000-F7FFF 0E8000-0EFFFF 0E0000-0E7FFF 0D8000-0DFFFF 0D0000-0D7FFF 0C8000-0CFFFF 0C0000-0C7FFF 0B8000-0BFFFF 0B0000-0B7FFF 0A8000-0AFFFF 0A0000-0A7FFF 098000-09FFFF 090000-097FFF 088000-08FFFF 080000-087FFF 078000-07FFFF 070000-077FFF 068000-06FFFF 060000-067FFF 058000-05FFFF 050000-057FFF 048000-04FFFF 040000-047FFF 038000-03FFFF 030000-037FFF 028000-02FFFF 020000-027FFF 018000-01FFFF 010000-017FFF 008000-00FFFF 000000-007FFF
33/55
M28W320FST, M28W320FSB, M28W640FST, M28W640FSB
Table 22. Bottom Boot Block Addresses, M28W320FSB
# 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 Size (KWord) 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 Address Range 1F8000-1FFFFF 1F0000-1F7FFF 1E8000-1EFFFF 1E0000-1E7FFF 1D8000-1DFFFF 1D0000-1D7FFF 1C8000-1CFFFF 1C0000-1C7FFF 1B8000-1BFFFF 1B0000-1B7FFF 1A8000-1AFFFF 1A0000-1A7FFF 198000-19FFFF 190000-197FFF 188000-18FFFF 180000-187FFF 178000-17FFFF 170000-177FFF 168000-16FFFF 160000-167FFF 158000-15FFFF 150000-157FFF 148000-14FFFF 140000-147FFF 138000-13FFFF 130000-137FFF 128000-12FFFF 120000-127FFF 118000-11FFFF 110000-117FFF 108000-10FFFF 100000-107FFF 0F8000-0FFFFF 0F0000-0F7FFF 0E8000-0EFFFF 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 4 4 4 4 4 4 4 4 0E0000-0E7FFF 0D8000-0DFFFF 0D0000-0D7FFF 0C8000-0CFFFF 0C0000-0C7FFF 0B8000-0BFFFF 0B0000-0B7FFF 0A8000-0AFFFF 0A0000-0A7FFF 098000-09FFFF 090000-097FFF 088000-08FFFF 080000-087FFF 078000-07FFFF 070000-077FFF 068000-06FFFF 060000-067FFF 058000-05FFFF 050000-057FFF 048000-04FFFF 040000-047FFF 038000-03FFFF 030000-037FFF 028000-02FFFF 020000-027FFF 018000-01FFFF 010000-017FFF 008000-00FFFF 007000-007FFF 006000-006FFF 005000-005FFF 004000-004FFF 003000-003FFF 002000-002FFF 001000-001FFF 000000-000FFF
34/55
M28W320FST, M28W320FSB, M28W640FST, M28W640FSB
Table 23. Top Boot Block Addresses, M28W640FST
# 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 Size (KWord) 4 4 4 4 4 4 4 4 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 Address Range 3FF000-3FFFFF 3FE000-3FEFFF 3FD000-3FDFFF 3FC000-3FCFFF 3FB000-3FBFFF 3FA000-3FAFFF 3F9000-3F9FFF 3F8000-3F8FFF 3F0000-3F7FFF 3E8000-3EFFFF 3E0000-3E7FFF 3D8000-3DFFFF 3D0000-3D7FFF 3C8000-3CFFFF 3C0000-3C7FFF 3B8000-3BFFFF 3B0000-3B7FFF 3A8000-3AFFFF 3A0000-3A7FFF 398000-39FFFF 390000-397FFF 388000-38FFFF 380000-387FFF 378000-37FFFF 370000-377FFF 368000-36FFFF 360000-367FFF 358000-35FFFF 350000-357FFF 348000-34FFFF 340000-347FFF 338000-33FFFF 330000-337FFF 328000-32FFFF 320000-327FFF 318000-31FFFF 310000-317FFF 308000-30FFFF 300000-307FFF 2F8000-2FFFFF 2F0000-2F7FFF 2E8000-2EFFFF # 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 Size (KWord) 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 Address Range 2E0000-2E7FFF 2D8000-2DFFFF 2D0000-2D7FFF 2C8000-2CFFFF 2C0000-2C7FFF 2B8000-2BFFFF 2B0000-2B7FFF 2A8000-2AFFFF 2A0000-2A7FFF 298000-29FFFF 290000-297FFF 288000-28FFFF 280000-287FFF 278000-27FFFF 270000-277FFF 268000-26FFFF 260000-267FFF 258000-25FFFF 250000-257FFF 248000-24FFFF 240000-247FFF 238000-23FFFF 230000-237FFF 228000-22FFFF 220000-227FFF 218000-21FFFF 210000-217FFF 208000-20FFFF 200000-207FFF 1F8000-1FFFFF 1F0000-1F7FFF 1E8000-1EFFFF 1E0000-1E7FFF 1D8000-1DFFFF 1D0000-1D7FFF 1C8000-1CFFFF 1C0000-1C7FFF 1B8000-1BFFFF 1B0000-1B7FFF 1A8000-1AFFFF 1A0000-1A7FFF 198000-19FFFF 190000-197FFF 188000-18FFFF
35/55
M28W320FST, M28W320FSB, M28W640FST, M28W640FSB
# 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 Size (KWord) 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 Address Range 180000-187FFF 178000-17FFFF 170000-177FFF 168000-16FFFF 160000-167FFF 158000-15FFFF 150000-157FFF 148000-14FFFF 140000-147FFF 138000-13FFFF 130000-137FFF 128000-12FFFF 120000-127FFF 118000-11FFFF 110000-117FFF 108000-10FFFF 100000-107FFF 0F8000-0FFFFF 0F0000-0F7FFF 0E8000-0EFFFF 0E0000-0E7FFF 0D8000-0DFFFF 0D0000-0D7FFF 0C8000-0CFFFF 0C0000-0C7FFF 0B8000-0BFFFF 0B0000-0B7FFF 0A8000-0AFFFF 0A0000-0A7FFF 098000-09FFFF 090000-097FFF 088000-08FFFF 080000-087FFF 078000-07FFFF 070000-077FFF 068000-06FFFF 060000-067FFF 058000-05FFFF 050000-057FFF 048000-04FFFF 040000-047FFF 038000-03FFFF 030000-037FFF 028000-02FFFF # 130 131 132 133 134 Size (KWord) 32 32 32 32 32 Address Range 020000-027FFF 018000-01FFFF 010000-017FFF 008000-00FFFF 000000-007FFF
36/55
M28W320FST, M28W320FSB, M28W640FST, M28W640FSB
Table 24. Bottom Boot Block Addresses, M28W640FSB
# 134 133 132 131 130 129 128 127 126 125 124 123 122 121 120 119 118 117 116 115 114 113 112 111 110 109 108 107 106 105 104 103 102 101 100 99 98 97 96 95 94 93 Size (KWord) 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 Address Range 3F8000-3FFFFF 3F0000-3F7FFF 3E8000-3EFFFF 3E0000-3E7FFF 3D8000-3DFFFF 3D0000-3D7FFF 3C8000-3CFFFF 3C0000-3C7FFF 3B8000-3BFFFF 3B0000-3B7FFF 3A8000-3AFFFF 3A0000-3A7FFF 398000-39FFFF 390000-397FFF 388000-38FFFF 380000-387FFF 378000-37FFFF 370000-377FFF 368000-36FFFF 360000-367FFF 358000-35FFFF 350000-357FFF 348000-34FFFF 340000-347FFF 338000-33FFFF 330000-337FFF 328000-32FFFF 320000-327FFF 318000-31FFFF 310000-317FFF 308000-30FFFF 300000-307FFF 2F8000-2FFFFF 2F0000-2F7FFF 2E8000-2EFFFF 2E0000-2E7FFF 2D8000-2DFFFF 2D0000-2D7FFF 2C8000-2CFFFF 2C0000-2C7FFF 2B8000-2BFFFF 2B0000-2B7FFF # 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 Size (KWord) 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 Address Range 2A8000-2AFFFF 2A0000-2A7FFF 298000-29FFFF 290000-297FFF 288000-28FFFF 280000-287FFF 278000-27FFFF 270000-277FFF 268000-26FFFF 260000-267FFF 258000-25FFFF 250000-257FFF 248000-24FFFF 240000-247FFF 238000-23FFFF 230000-237FFF 228000-22FFFF 220000-227FFF 218000-21FFFF 210000-217FFF 208000-20FFFF 200000-207FFF 1F8000-1FFFFF 1F0000-1F7FFF 1E8000-1EFFFF 1E0000-1E7FFF 1D8000-1DFFFF 1D0000-1D7FFF 1C8000-1CFFFF 1C0000-1C7FFF 1B8000-1BFFFF 1B0000-1B7FFF 1A8000-1AFFFF 1A0000-1A7FFF 198000-19FFFF 190000-197FFF 188000-18FFFF 180000-187FFF 178000-17FFFF 170000-177FFF 168000-16FFFF 160000-167FFF 158000-15FFFF 150000-157FFF
37/55
M28W320FST, M28W320FSB, M28W640FST, M28W640FSB
# 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 Size (KWord) 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 4 4 4 Address Range 148000-14FFFF 140000-147FFF 138000-13FFFF 130000-137FFF 128000-12FFFF 120000-127FFF 118000-11FFFF 110000-117FFF 108000-10FFFF 100000-107FFF 0F8000-0FFFFF 0F0000-0F7FFF 0E8000-0EFFFF 0E0000-0E7FFF 0D8000-0DFFFF 0D0000-0D7FFF 0C8000-0CFFFF 0C0000-0C7FFF 0B8000-0BFFFF 0B0000-0B7FFF 0A8000-0AFFFF 0A0000-0A7FFF 098000-09FFFF 090000-097FFF 088000-08FFFF 080000-087FFF 078000-07FFFF 070000-077FFF 068000-06FFFF 060000-067FFF 058000-05FFFF 050000-057FFF 048000-04FFFF 040000-047FFF 038000-03FFFF 030000-037FFF 028000-02FFFF 020000-027FFF 018000-01FFFF 010000-017FFF 008000-00FFFF 007000-007FFF 006000-006FFF 005000-005FFF # 4 3 2 1 0 Size (KWord) 4 4 4 4 4 Address Range 004000-004FFF 003000-003FFF 002000-002FFF 001000-001FFF 000000-000FFF
38/55
M28W320FST, M28W320FSB, M28W640FST, M28W640FSB
APPENDIX B. COMMON FLASH INTERFACE (CFI)
The Common Flash Interface is a JEDEC approved, standardized data structure that can be read from the Flash memory device. It allows a system software to query the device to determine various electrical and timing parameters, density information and functions supported by the memory. The system can interface easily with the device, enabling the software to upgrade itself when necessary. When the CFI Query Command (RCFI) is issued the device enters CFI Query mode and the data Table 25. Query Structure Overview
Offset 00h 10h 1Bh 27h P A Reserved CFI Query Identification String System Interface Information Device Geometry Definition Primary Algorithm-specific Extended Query table Alternate Algorithm-specific Extended Query table Sub-section Name Description Reserved for algorithm-specific information Command set ID and algorithm data offset Device timing & voltage information Flash device layout Additional information specific to the Primary Algorithm (optional) Additional information specific to the Alternate Algorithm (optional)
structure is read from the memory. Tables 25, 26, 27, 28, 29 and 30 show the addresses used to retrieve the data. The CFI data structure also contains a security area where a 64 bit unique security number is written (see Table 30., Security Code Area). This area can be accessed only in Read mode by the final user. It is impossible to change the security number after it has been written by ST. Issue a Read command to return to Read mode.
Note: Query data are always presented on the lowest order data outputs.
Table 26. CFI Query Identification String
Offset 00h Data 0020h 8858h 8859h 880Ah 880Bh reserved 0051h 0052h 0059h 0003h 0000h 0035h Address for Primary Algorithm extended Query table (see Table 28.) 16h 17h 18h 19h 1Ah 0000h 0000h 0000h 0000h 0000h Alternate Vendor Command Set and Control Interface ID Code second vendor specified algorithm supported (0000h means none exists) Address for Alternate Algorithm extended Query table (0000h means none exists) NA P = 35h Primary Algorithm Command Set and Control Interface ID code 16 bit ID code defining a specific algorithm Query Unique ASCII String "QRY" Manufacturer Code Description Value ST Top Bottom
01h
Device Code
02h-0Fh 10h 11h 12h 13h 14h 15h
Reserved "Q" "R" "Y" Intel compatible
NA
Note: Query data are always presented on the lowest order data outputs (DQ7-DQ0) only. DQ8-DQ15 are `0'.
39/55
M28W320FST, M28W320FSB, M28W640FST, M28W640FSB
Table 27. CFI Query System Interface Information
Offset 1Bh Data 0027h Description VDD Logic Supply Minimum Program/Erase or Write voltage bit 7 to 4BCD value in volts bit 3 to 0BCD value in 100 mV VDD Logic Supply Maximum Program/Erase or Write voltage bit 7 to 4BCD value in volts bit 3 to 0BCD value in 100 mV VPP [Programming] Supply Minimum Program/Erase voltage bit 7 to 4HEX value in volts bit 3 to 0BCD value in 100 mV VPP [Programming] Supply Maximum Program/Erase voltage bit 7 to 4HEX value in volts bit 3 to 0BCD value in 100 mV Typical time-out per single word program = 2n s Typical time-out for Double/Quadruple Word Program = 2n s Typical time-out per individual block erase = 2n ms Typical time-out for full chip erase = 2n ms Maximum time-out for Word program = 2n times typical Maximum time-out for Double/Quadruple Word Program = 2n times typical Maximum time-out per individual block erase = 2n times typical Maximum time-out for chip erase = 2n times typical Value 2.7V
1Ch
0036h
3.6V
1Dh
00B4h
11.4V
1Eh 1Fh 20h 21h 22h 23h 24h 25h 26h
00C6h 0004h 0004h 000Ah 0000h 0005h 0005h 0003h 0000h
12.6V 16s 16s 1s NA 512s 512s 8s NA
40/55
M28W320FST, M28W320FSB, M28W640FST, M28W640FSB
Table 28. Device Geometry Definition
Offset Word Mode M28W640FST M28W320FST M28W640FSB M28W320FSB Data Description Value
0016h
4 MByte
27h
Device Size = 2n in number of bytes
0017h
8 MByte
28h 29h 2Ah 2Bh 2Ch 2Dh 2Eh M28W320FST 2Fh 30h 31h 32h 33h 34h 2Dh 2Eh M28W320FSB 2Fh 30h 31h 32h 33h 34h 2Dh 2Eh M28W640FST 2Fh 30h 31h 32h 33h 34h
0001h 0000h 0003h 0000h 0002h 003Eh 0000h 0000h 0001h 0007h 0000h 0020h 0000h 0007h 0000h 0020h 0000h 003Eh 0000h 0000h 0001h 007Eh 0000h 0000h 0001h 0007h 0000h 0020h 0000h
Flash Device Interface Code description Maximum number of bytes in multi-byte program or page = 2n Number of Erase Block Regions within the device. It specifies the number of regions within the device containing contiguous Erase Blocks of the same size. Region 1 Information Number of identical-size erase block = 003Eh+1 Region 1 Information Block size in Region 1 = 0100h * 256 byte Region 2 Information Number of identical-size erase block = 0007h+1 Region 2 Information Block size in Region 2 = 0020h * 256 byte Region 1 Information Number of identical-size erase block = 0007h+1 Region 1 Information Block size in Region 1 = 0020h * 256 byte Region 2 Information Number of identical-size erase block = 003Eh=1 Region 2 Information Block size in Region 2 = 0100h * 256 byte Region 1 Information Number of identical-size erase block = 007Eh+1 Region 1 Information Block size in Region 1 = 0100h * 256 byte Region 2 Information Number of identical-size erase block = 0007h+1 Region 2 Information Block size in Region 2 = 0020h * 256 byte
x16 Async. 8
2
63 64 KByte 8 8 KByte 8 8 KByte 63 64 KByte 127 64 KByte 8 8 KByte
41/55
M28W320FST, M28W320FSB, M28W640FST, M28W640FSB
Offset Word Mode 2Dh 2Eh M28W640FSB 2Fh 30h 31h 32h 33h 34h
Data 0007h 0000h 0020h 0000h 007Eh 0000h 0000h 0001h
Description Region 1 Information Number of identical-size erase block = 0007h+1 Region 1 Information Block size in Region 1 = 0020h * 256 byte Region 2 Information Number of identical-size erase block = 007Eh=1 Region 2 Information Block size in Region 2 = 0100h * 256 byte
Value 8 8 KByte 127 64 KByte
42/55
M28W320FST, M28W320FSB, M28W640FST, M28W640FSB
Table 29. Primary Algorithm-Specific Extended Query Table
Offset P = 35h (1) (P+0)h = 35h (P+1)h = 36h (P+2)h = 37h (P+3)h = 38h (P+4)h = 39h (P+5)h = 3Ah (P+6)h = 3Bh (P+7)h = 3Ch (P+8)h = 3Dh Data 0050h 0052h 0049h 0031h 0030h 0066h 0000h 0000h 0000h Major version number, ASCII Minor version number, ASCII Extended Query table contents for Primary Algorithm. Address (P+5)h contains less significant byte. bit 0Chip Erase supported(1 = Yes, 0 = No) bit 1Suspend Erase supported(1 = Yes, 0 = No) bit 2Suspend Program supported(1 = Yes, 0 = No) bit 3Legacy Lock/Unlock supported(1 = Yes, 0 = No) bit 4Queued Erase supported(1 = Yes, 0 = No) bit 5Instant individual block locking supported(1 = Yes, 0 = No) bit 6Protection bits supported(1 = Yes, 0 = No) bit 7Page mode read supported(1 = Yes, 0 = No) bit 8Synchronous read supported(1 = Yes, 0 = No) bit 31 to 9Reserved; undefined bits are `0' Supported Functions after Suspend Read Array, Read Status Register and CFI Query are always supported during Erase or Program operation bit 0Program supported after Erase Suspend (1 = Yes, 0 = No) bit 7 to 1Reserved; undefined bits are `0' Block Lock Status Defines which bits in the Block Status Register section of the Query are implemented. Address (P+A)h contains less significant byte bit 0Block Lock Status Register Lock/Unlock bit active(1 = Yes, 0 = No) bit 15 to 1Reserved for future use; undefined bits are `0' VDD Logic Supply Optimum Program/Erase voltage (highest performance) bit 7 to 4HEX value in volts bit 3 to 0BCD value in 100 mV VPP Supply Optimum Program/Erase voltage bit 7 to 4HEX value in volts bit 3 to 0BCD value in 100 mV Number of Protection register fields in JEDEC ID space. "00h," indicates that 256 protection bytes are available Primary Algorithm extended Query table unique ASCII string "PRI" Description Value "P" "R" "I" "1" "0"
No Yes Yes No No Yes Yes No No
(P+9)h = 3Eh
0001h
Yes
(P+A)h = 3Fh (P+B)h = 40h
0003h 0000h
Yes Yes 3V
(P+C)h = 41h
0030h
(P+D)h = 42h
00C0h
12V
(P+E)h = 43h
0001h
01
43/55
M28W320FST, M28W320FSB, M28W640FST, M28W640FSB
Offset P = 35h (1) (P+F)h = 44h (P+10)h = 45h (P+11)h = 46h M28W320FST, M28W320FSB
Data 0080h 0000h 0003h
Description
Value 80h 00h
0003h (P+12) h = 47h 0004h
(P+13)h = 48h
M28W640FST, M28W640FSB
Protection Field 1: Protection Description This field describes user-available One Time Programmable (OTP) Protection Register bytes. Some are pre-programmed with device unique serial numbers. Others are user programmable. Bits 0-15 point to the Protection Register Lock byte, the section's first byte. The following bytes are factory pre-programmed and user-programmable. bit 0 to 7 Lock/bytes JEDEC-plane physical low address bit 8 to 15Lock/bytes JEDEC-plane physical high address bit 16 to 23 "n" such that 2n = factory pre-programmed bytes bit 24 to 31 "n" such that 2n = user programmable bytes
8 Bytes 8 Bytes
16 Bytes
Reserved
Note: 1. See Table 26., offset 15 for P pointer definition.
Table 30. Security Code Area
Offset 80h 81h 82h 83h 84h 85h 86h 87h 88h 89h 8Ah 8Bh 8Ch Data 00XX XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX 128 bits: User Programmable OTP 64 bits: unique device number Protection Register Lock Description
44/55
M28W320FST, M28W320FSB, M28W640FST, M28W640FSB
APPENDIX C. FLOWCHARTS AND PSEUDO CODES
Figure 15. Program Flowchart and Pseudo Code
Start
Write 40h or 10h
program_command (addressToProgram, dataToProgram) {: writeToFlash (any_address, 0x40) ; /*or writeToFlash (any_address, 0x10) ; */ writeToFlash (addressToProgram, dataToProgram) ; /*Memory enters read status state after the Program Command*/ do { status_register=readFlash (any_address) ; /* E or G must be toggled*/
Write Address & Data
Read Status Register
b7 = 1 YES b3 = 0 YES b4 = 0 YES b1 = 0 YES End
NO } while (status_register.b7== 0) ;
NO
VPP Invalid Error (1, 2)
if (status_register.b3==1) /*VPP invalid error */ error_handler ( ) ;
NO
Program Error (1, 2)
if (status_register.b4==1) /*program error */ error_handler ( ) ;
NO
Program to Protected Block Error (1, 2)
if (status_register.b1==1) /*program to protect block error */ error_handler ( ) ;
}
AI03538b
Note: 1. Status check of b1 (Protected Block), b3 (VPP Invalid) and b4 (Program Error) can be made after each program operation or after a sequence. 2. If an error is found, the Status Register must be cleared before further Program/Erase Controller operations.
45/55
M28W320FST, M28W320FSB, M28W640FST, M28W640FSB
Figure 16. Double Word Program Flowchart and Pseudo Code
Start
Write 30h
Write Address 1 & Data 1 (3)
Write Address 2 & Data 2 (3)
double_word_program_command (addressToProgram1, dataToProgram1, addressToProgram2, dataToProgram2) { writeToFlash (any_address, 0x30) ; writeToFlash (addressToProgram1, dataToProgram1) ; /*see note (3) */ writeToFlash (addressToProgram2, dataToProgram2) ; /*see note (3) */ /*Memory enters read status state after the Program command*/ do { status_register=readFlash (any_address) ; /* E or G must be toggled*/
Read Status Register
b7 = 1 YES b3 = 0 YES b4 = 0 YES b1 = 0 YES End
NO } while (status_register.b7== 0) ;
NO
VPP Invalid Error (1, 2)
if (status_register.b3==1) /*VPP invalid error */ error_handler ( ) ;
NO
Program Error (1, 2)
if (status_register.b4==1) /*program error */ error_handler ( ) ;
NO
Program to Protected Block Error (1, 2)
if (status_register.b1==1) /*program to protect block error */ error_handler ( ) ;
}
AI03539b
Note: 1. Status check of b1 (Protected Block), b3 (VPP Invalid) and b4 (Program Error) can be made after each program operation or after a sequence. 2. If an error is found, the Status Register must be cleared before further Program/Erase operations. 3. Address 1 and Address 2 must be consecutive addresses differing only for bit A0.
46/55
M28W320FST, M28W320FSB, M28W640FST, M28W640FSB
Figure 17. Quadruple Word Program Flowchart and Pseudo Code
Start
Write 56h
Write Address 1 & Data 1 (3)
quadruple_word_program_command (addressToProgram1, dataToProgram1, addressToProgram2, dataToProgram2, addressToProgram3, dataToProgram3, addressToProgram4, dataToProgram4) { writeToFlash (any_address, 0x56) ; writeToFlash (addressToProgram1, dataToProgram1) ; /*see note (3) */
Write Address 2 & Data 2 (3)
writeToFlash (addressToProgram2, dataToProgram2) ; /*see note (3) */ writeToFlash (addressToProgram3, dataToProgram3) ; /*see note (3) */ writeToFlash (addressToProgram4, dataToProgram4) ; /*see note (3) */
Write Address 3 & Data 3 (3)
Write Address 4 & Data 4 (3)
/*Memory enters read status state after the Program command*/ do { status_register=readFlash (any_address) ; /* E or G must be toggled*/
Read Status Register
b7 = 1 YES b3 = 0 YES b4 = 0 YES b1 = 0 YES End
NO } while (status_register.b7== 0) ;
NO
VPP Invalid Error (1, 2)
if (status_register.b3==1) /*VPP invalid error */ error_handler ( ) ;
NO
Program Error (1, 2)
if (status_register.b4==1) /*program error */ error_handler ( ) ;
NO
Program to Protected Block Error (1, 2)
if (status_register.b1==1) /*program to protect block error */ error_handler ( ) ;
}
AI06233
Note: 1. Status check of b1 (Protected Block), b3 (VPP Invalid) and b4 (Program Error) can be made after each program operation or after a sequence. 2. If an error is found, the Status Register must be cleared before further Program/Erase operations. 3. Address 1 to Address 4 must be consecutive addresses differing only for bits A0 and A1.
47/55
M28W320FST, M28W320FSB, M28W640FST, M28W640FSB
Figure 18. Program Suspend & Resume Flowchart and Pseudo Code
Start program_suspend_command ( ) { writeToFlash (any_address, 0xB0) ; writeToFlash (any_address, 0x70) ; /* read status register to check if program has already completed */ Write 70h do { status_register=readFlash (any_address) ; /* E or G must be toggled*/
Write B0h
Read Status Register
b7 = 1 YES b2 = 1 YES Write FFh
NO
} while (status_register.b7== 0) ;
NO
Program Complete
if (status_register.b2==0) /*program completed */ { writeToFlash (any_address, 0xFF) ; read_data ( ) ; /*read data from another block*/ /*The device returns to Read Array (as if program/erase suspend was not issued).*/
Read data from another address
} else { writeToFlash (any_address, 0xFF) ; read_data ( ); /*read data from another address*/ writeToFlash (any_address, 0xD0) ; /*write 0xD0 to resume program*/ } } Read Data
Write D0h
Write FFh
Program Continues
AI03540b
48/55
M28W320FST, M28W320FSB, M28W640FST, M28W640FSB
Figure 19. Erase Flowchart and Pseudo Code
Start erase_command ( blockToErase ) { writeToFlash (any_address, 0x20) ; writeToFlash (blockToErase, 0xD0) ; /* only A12-A20 are significannt */ /* Memory enters read status state after the Erase Command */
Write 20h
Write Block Address & D0h
Read Status Register
do { status_register=readFlash (any_address) ; /* E or G must be toggled*/
b7 = 1
NO } while (status_register.b7== 0) ;
YES b3 = 0 YES b4, b5 = 1 NO b5 = 0 YES b1 = 0 YES End }
AI03541b
NO
VPP Invalid Error (1)
if (status_register.b3==1) /*VPP invalid error */ error_handler ( ) ;
YES
Command Sequence Error (1)
if ( (status_register.b4==1) && (status_register.b5==1) ) /* command sequence error */ error_handler ( ) ;
NO
Erase Error (1)
if ( (status_register.b5==1) ) /* erase error */ error_handler ( ) ;
NO
Erase to Protected Block Error (1)
if (status_register.b1==1) /*program to protect block error */ error_handler ( ) ;
Note: If an error is found, the Status Register must be cleared before further Program/Erase operations.
49/55
M28W320FST, M28W320FSB, M28W640FST, M28W640FSB
Figure 20. Erase Suspend & Resume Flowchart and Pseudo Code
Start
Write B0h
erase_suspend_command ( ) { writeToFlash (any_address, 0xB0) ; writeToFlash (any_address, 0x70) ; /* read status register to check if erase has already completed */
Write 70h
Read Status Register
do { status_register=readFlash (any_address) ; /* E or G must be toggled*/
b7 = 1 YES b6 = 1 YES Write FFh
NO
} while (status_register.b7== 0) ;
NO
Erase Complete
if (status_register.b6==0) /*erase completed */ { writeToFlash (any_address, 0xFF) ;
read_data ( ) ; /*read data from another block*/ /*The device returns to Read Array (as if program/erase suspend was not issued).*/
Read data from another block or Program/Protection Program or Block Protect/Unprotect/Lock else
} { writeToFlash (any_address, 0xFF) ; read_program_data ( ); /*read or program data from another address*/ writeToFlash (any_address, 0xD0) ; /*write 0xD0 to resume erase*/ } }
Write D0h
Write FFh
Erase Continues
Read Data
AI03542b
50/55
M28W320FST, M28W320FSB, M28W640FST, M28W640FSB
Figure 21. Protection Register Program Flowchart and Pseudo Code
Start
Write C0h
protection_register_program_command (addressToProgram, dataToProgram) {: writeToFlash (any_address, 0xC0) ;
Write Address & Data
writeToFlash (addressToProgram, dataToProgram) ; /*Memory enters read status state after the Program Command*/ do { status_register=readFlash (any_address) ; /* E or G must be toggled*/
Read Status Register
b7 = 1 YES b3 = 0 YES b4 = 0 YES b1 = 0 YES End
NO } while (status_register.b7== 0) ;
NO
VPP Invalid Error (1, 2)
if (status_register.b3==1) /*VPP invalid error */ error_handler ( ) ;
NO
Program Error (1, 2)
if (status_register.b4==1) /*program error */ error_handler ( ) ;
NO
Program to Protected Block Error (1, 2)
if (status_register.b1==1) /*program to protect block error */ error_handler ( ) ;
}
AI04381
Note: 1. Status check of b1 (Protected Block), b3 (VPP Invalid) and b4 (Program Error) can be made after each program operation or after a sequence. 2. If an error is found, the Status Register must be cleared before further Program/Erase Controller operations.
51/55
M28W320FST, M28W320FSB, M28W640FST, M28W640FSB
APPENDIX D. COMMAND INTERFACE AND PROGRAM/ERASE CONTROLLER STATE
Table 31. Write State Machine Current/Next, sheet 1 of 2.
Current State Read Array Read Status Read Elect.Sg. Read CFI Query Prot. Prog. Setup Prot. Prog. (continue) Prot. Prog. (complete) Prog. Setup Program (continue) Prog. Sus Status Prog. Sus Read Array Prog. Sus Read Elect.Sg. Prog. Sus Read CFI Program (complete) Erase Setup Erase Cmd.Error Erase (continue) Erase Sus Read Sts Erase Sus Read Array Erase Sus Read Elect.Sg. Erase Sus Read CFI Erase (complete) SR bit 7 "1" "1" "1" "1" "1" "0" "1" "1" "0" "1" "1" Data When Read Array Status Electronic Signature CFI Status Status Status Status Status Status Array Electronic Signature CFI Status Status Status Status Status Array Electronic Signature CFI Status Erase Sus Read Array Erase Sus Read Array Erase Sus Read Array Erase Sus Read Array Read Array Prog. Sus Read Array Prog. Sus Read Array Prog. Sus Read Array Prog. Sus Read Array Read Array Program (continue) Program Suspend to Read Array Program Suspend to Read Array Program Suspend to Read Array Program Suspend to Read Array Program Setup Erase Setup Erase (continue) Program (continue) Program (continue) Program (continue) Program (continue) Read Array Program Setup Command Input (and Next State) Read Array (FFh) Program Setup (10/40h) Program Setup Program Setup Program Setup Erase Setup (20h) Ers. Setup Erase Setup Erase Setup Erase Setup Erase Confirm (D0h) Prog/Ers Suspend (B0h) Read Array Read Array Read Array Read Array Protection Register Program Protection Register Program continue Erase Setup Read Array Program Prog. Sus Read Sts Prog. Sus Read Array Prog. Sus Read Array Prog. Sus Read Array Prog. Sus Read Array Read Array Erase CmdError Read Array Erase Sus Read Sts Erase (continue) Erase (continue) Erase (continue) Erase (continue) Erase Sus Read Array Erase Sus Read Array Erase Sus Read Array Erase Sus Read Array Read Array Erase (continue) Program (continue) Program (continue) Program (continue) Program (continue) Program (continue) Prog. Sus Read Sts Prog. Sus Read Sts Prog. Sus Read Sts Prog. Sus Read Sts Read Status Prog. Sus Read Array Prog. Sus Read Array Prog. Sus Read Array Prog. Sus Read Array Read Array Read Status Read Array Prog/Ers Resume (D0h) Read Status (70h) Read Sts. Read Status Read Status Read Status Clear Status (50h) Read Array Read Array Read Array Read Array
Read Array Prog.Setup Read Array Read Array Read Array
"1"
"1" "1" "1" "1" "0" "1" "1"
Erase Command Error Read Array Program Setup Erase Setup
Erase Command Error Read Status Read Array
Erase (continue) Program Setup Program Setup Program Setup Program Setup Program Setup Erase Sus Read Array Erase Sus Read Array Erase Sus Read Array Erase Sus Read Array Erase Setup
Erase (continue) Erase (continue) Erase (continue) Erase (continue) Erase (continue) Erase Sus Erase Sus Read Sts Read Array Erase Sus Erase Sus Read Sts Read Array Erase Sus Erase Sus Read Sts Read Array Erase Sus Erase Sus Read Sts Read Array Read Status Read Array
"1"
"1" "1"
Note: Cmd = Command, Elect.Sg. = Electronic Signature, Ers = Erase, Prog. = Program, Prot = Protection, Sus = Suspend.
52/55
M28W320FST, M28W320FSB, M28W640FST, M28W640FSB
Table 32. Write State Machine Current/Next, sheet 2 of 2.
Command Input (and Next State) Current State Read Array Read Status Read Elect.Sg. Read CFI Query Prot. Prog. Setup Prot. Prog. (continue) Prot. Prog. (complete) Prog. Setup Program (continue) Prog. Suspend Read Status Prog. Suspend Read Array Prog. Suspend Read Elect.Sg. Prog. Suspend Read CFI Program (complete) Erase Setup Erase Cmd.Error Erase (continue) Erase Suspend Read Ststus Erase Suspend Read Array Erase Suspend Read Elect.Sg. Erase Suspend Read CFI Query Erase (complete) Erase Suspend Read Elect.Sg. Erase Suspend Read Elect.Sg. Erase Suspend Read Elect.Sg. Erase Suspend Read Elect.Sg. Read Elect.Sg. Read Elect.Sg. Prog. Suspend Read Elect.Sg. Prog. Suspend Read Elect.Sg. Prog. Suspend Read Elect.Sg. Prog. Suspend Read Elect.Sg. Read Elect.Sg. Read Elect.Sg. Read Elect.Sg. (90h) Read Elect.Sg. Read Elect.Sg. Read Elect.Sg. Read Elect.Sg. Read CFI Query (98h) Read CFI Query Read CFI Query Read CFI Query Read CFI Query Protection Register Program Protection Register Program (continue) Read CFI Query Program Program (continue) Prog. Suspend Read CFI Query Prog. Suspend Read CFI Query Prog. Suspend Read CFI Query Prog. Suspend Read CFI Query Read CFIQuery Erase Command Error Read CFI Query Erase (continue) Erase Suspend Read CFI Query Erase Suspend Read CFI Query Erase Suspend Read CFI Query Erase Suspend Read CFI Query Read CFI Query Erase Suspend Read Array Erase Suspend Read Array Erase Suspend Read Array Erase Suspend Read Array Prot. Prog. Setup Prot. Prog. Setup Program Suspend Read Array Program Suspend Read Array Program Suspend Read Array Program Suspend Read Array Prot. Prog. Setup Prot. Prog. Setup Prot. Prog. Setup (C0h) Prot. Prog. Setup Prot. Prog. Setup Prot. Prog. Setup Prot. Prog. Setup
Note: Cmd = Command, Elect.Sg. = Electronic Signature, Prog. = Program, Prot = Protection.
53/55
M28W320FST, M28W320FSB, M28W640FST, M28W640FSB
REVISION HISTORY
Table 33. Document Revision History
Date 13-Jul-2004 05-Nov-2004 20-Jan-2005 15-Mar-2005 01-Aug-2005 Version 0.1 0.2 0.3 1.0 2.0 First Issue. DU (`Do Not Use') pins changed to NC (`Not Connected') in Figure 4., TBGA Connections (Top view through package). Data at address 47h differentiated for M28W320FS and M28W640FS inTable 29., Primary Algorithm-Specific Extended Query Table. Datasheet status promoted to PRELIMINARY DATA. Datasheet status promoted to FULL DATASHEET. ECOPACK text updated. Revision Details
54/55
M28W320FST, M28W320FSB, M28W640FST, M28W640FSB
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a registered trademark of STMicroelectronics. ECOPACK is a registered trademark of STMicroelectronics. All other names are the property of their respective owners (c) 2005 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com
55/55


▲Up To Search▲   

 
Price & Availability of M28W320FST70ZA6E

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X